GET IT RIGHT THE FIRST TIME: Innovation in Pavement Management

Rebecca McDaniel RMACES February 28, 2013

Topics

Getting it Right the First Time

Planning

Pavement Design

Material Selection

Construction

Renewal

Options

Costs of Not Getting It Right the First Time

Shorter pavement life until repair is needed

Increased costs for maintenance and rehab

Increased user costs

Delay and congestion

Decreased safety

Surface defects and traffic queues

Environmental effects

Increased emissions

Getting It Right Means

Using the right treatment/design Using it at the right time Designing appropriately

- Anticipating changes
- Not over-designing

Using the right materials

Building what was designed

Monitoring performance to plan/revise

How to Get It Right -- Planning

Agency decisions

- Project scope, details and specifications
- Traffic considerations

Contractor's choices

- Mix design
- Paving equipment types and amount
- Number of trucks and dispatching
- Locations of joints

Planning is Key!

OLLEGE OF ARCHITECTURE AND *BAD* PLANNING?

How to Get It Right – Pavement Design Methodologies

Experience

Empirical

Statistical models from road tests (AASHO)

Mechanistic-empirical

- Calculation of pavement responses, i.e., stresses, strains, deformations
- Empirical pavement performance models

Mechanistic

AASHO Road Test

What Is Wrong with Empirical AASHTO Design?

Current design traffic is far beyond road Projections test limits PAVEMENT THICKNESS **Data Limits** Projection C (AASHO Road Test) **Projection A Current Designs** >100 <2 million million

AXLE LOAD REPETITIONS

M-E Design

- Considers applied stresses and resulting strains
- Uses fundamental engineering properties that can be measured
- Computes reactions to stresses and strains and predicts distresses
- Feasible with improved computing capabilities

Mechanistic – Empirical Design Sounds Complicated

MEPDG (DARWin ME) expensive (\$5 to 40k) and fairly complex, requires lots of inputs and time.

Options:

- PerRoad 3.5
- PerRoad Express for low to medium volume roadways
- Free to download from APA

Perpetual Pavement

Asphalt pavement designed to last over 50 years without requiring major structural rehabilitation and needing only periodic surface renewal.

- Full-depth pavement constructed on subgrade
- Deep-strength pavement constructed on thin granular base course
- AKA extended-life pavement or long-life pavement

Concept

- Asphalt pavements with high enough strength will not exhibit structural failures even under heavy traffic.
- Distresses will initiate at the surface, typically in the form of rutting or cracking.
- Surface distresses can be removed/ repaired relatively easily,
 - Before causing structural damage,
 - Leaving most of pavement in place, performing well.

Perpetual Pavement Features

Three layer system

Each layer designed to resist specific distresses

- Base designed to resist fatigue and moisture damage, to be durable
- Intermediate/binder designed for durability and stability (rut resistance)
- Surface designed to resist surface initiated distresses (top-down cracking, rutting, other)

Classic Fatigue Theory

High Strain = Short Life

Low Strain = Long Life

Extrapolations of loads from AASHO Road Test

Extrapolation of Fatigue

Higher traffic leads to thicker pavements

Pavements may be over-designed

- Over-conservative
- Unnecessary expense
- Not sustainable
- Example Indiana pavements over-designed by 1.5 to 4.5 inches using 1993 AASHTO Guide (Huber et al., 2009)

Perpetual Pavement vs. Conventional Design

Perpetual Pavement vs. Conventional Design

Mechanistic design can be thinner and less expensive!

Fatigue Theory for Thick Pavements

High Strain = Short Life

Low Strain = Unlimited Life

Fatigue Endurance Limit

Strain level below which fatigue damage does not occur

500 million loads over 40 years, Prowell et al., 2010

Varying levels have been reported

- 70 μE Monismith and McClean, 1972
- 150-200 µ€ Mishizawa et al., 1996
- 70-100 µ€ conservative Willis, 2009
- 75-200 µ€ Prowell, et al., 2010
- 100-250 µ€ − MEPDG

Validating an Endurance Limit, NCHRP 9-44

Design Options

Stage construction

Plan for added thickness

Make existing pavements perpetual with overlays

With adequate structure

Low to medium volume roadways

 Not necessarily thicker and more expensive than conventional; lower life cycle costs

Rubblized concrete pavement foundation

Components of HMA Pavements

Aggregates (~95% by weight or ~85% by volume)
Asphalt Cement (~5% by weight or ~15% by volume)

Can include recycled asphalt pavement (RAP).

Surface/Wearing Course

High quality HMA, SMA or OGFC (38-75 mm)
Rut resistant

Other local requirements/considerations

Intermediate/Binder Course

Stability

- Stone-on stone contact
- Angular aggregate
- High temperature PG grade

Durability

- Proper air void content
- Moisture resistant

Base Course

Resistant to fatigue cracking

- Higher binder content → lower voids, higher density → durability and fatigue resistance
 - Rich bottom bases designed at 2-3% air voids
- Binder grade
- Fine gradation
- Moisture resistant

Base Course

Alternate – stiff base of adequate thickness to reduce strain

- Hard binders
- High modulus mixes hard binder and high binder content
 - Stiffness reduces strains in subgrade (at equal thickness)
 - High binder content improves compaction, reduces fatigue

Foundation

Working platform during construction and support over service life

- CBR ≥ 5%
- Mr ≥ 7000 psi
- Proof rolling
- Stabilization
- Positive drainage
- Frost penetration?
- Intelligent compaction?

weak subgrade or underlying layer

Construction

Conventional equipment and procedures

Attention to detail/quality

Compaction critical

- Starting with foundation and including all layers
- Density and air voids

Avoid segregation

Ensure good bonding between layers

Intelligent Compaction

Inadequate compaction is major cause of distress. Intelligent Compaction allows:

- Mapping underlying layers to identify weak areas
- Monitoring coverage during rolling to improve rolling patterns
- Monitoring strength gain or increased density

IMPORTANCE OF COMPACTION

Each 1% increase in air voids (over 7%) reduces pavement life by about 1 year!

Intelligent Compaction can help us ensure good compaction.

GPS Set Up

GPS Base Station

GPS Radio & Receiver

GPS Rover

Real Time Kinematic (RTK) GPS Precision

Mapping of Roller Passes

Improved Rolling Pattern

Improved Night Paving

INFRA-RED THERMAL SENSOR

Benefits of IC for HMA

Improved density....better performance
Improved efficiency....cost savings
Increased information...better QC/QA, forensics

Pave-IR Purpose

Promote more uniform, higher quality pavements

WSDOT, NCAT, and TTI found thermal uniformity useful for detecting segregation.

A segregated mat increases the contractor's chances of QC/QA core being in a poor/low density area.

A segregated mat increases agency's risk of early distress.

Conclusion

IC and Pave-IR together can provide:

- Feedback and control of the paving process
- Increase uniformity of mix placement and compaction
- Increase the performance of our pavements
- Ability to decrease the amount of QC/QA testing needed
- Proof of quality placement and compaction
- Increased accountability

PERFORMANCE MONITORING

OMonitor pavement distresses

- Thermal cracking
- Minor surface rutting
- Top-down fatigue
- Raveling or functional problems

ORepair surface distresses before they become structural

- Mill and fill
- Thin overlay

Renewal Options

For Perpetual or Conventional Pavements

- Mill and fill
- Mill and overlay
- Thin overlays 4.75 mm mixes
- In-place recycling hot or cold
- Full depth reclamation new construction

MILLING

- Removes old/distressed pavement
- Improves smoothness
- Eliminates costly shoulder work
- Maintains drainage features, curbs, overhead clearance
- Valuable rehabilitation option

Customizable

Process can be simple or more involved

Ranges of options

Share the responsibility, risks, benefits

Quality is free as long as it is done right the first time.

Bruce McIntyre

Rebecca McDaniel
North Central Superpave Center
rsmcdani@purdue.edu
765/463-2317 ext 226

Thanks to Lee Gallivan, Greg Johnson and Libby Burley for slides, photos and ideas.